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The no-normal-flow condition states that the stream-function is constant at solid
boundaries. For multiply connected domains these (unknown) constants differ per
boundary and must be determined from integral conditions. This complicates
discretization and solution of the problem considerably. In this paper we describe
a simple, elegant, and systematic way for solving this problem within the context
of a finite element discretization and apply our ideas to global ocean circulation
simulation. c© 1998 Academic Press
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1. INTRODUCTION

In 2D incompressible flow simulations, use is often made of the vorticity-stream function
formulation (e.g., [7]). The main advantage is a reduction from three partial differential
equations for the primitive variables (pressure and two velocity components) to either one
(fourth-order) partial differential equation for the stream-function or to a set of two (second-
order) equations for the scalar quantities vorticity and stream function. Another advantage
is that the continuity equation will be satisfied automatically.

A drawback of the introduction of a stream-function is that the boundary conditions on
solid boundaries get somewhat more complicated. The condition of no normal flow implies
that the stream-function must be constant. On a simply connected domain, with only one
boundary, one can simply choose the constant to be zero (or arbitrary). However, if the
domain is multiply connected, there are several (internal) boundaries and one has to deter-
mine the constants at each of the boundaries. These constants cannot be determined from
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the partial differential equations for stream-function and vorticity but additional integral
conditions can be derived to relate stream-functions on the different boundaries to each
other. In numerical schemes, these integral conditions may pose serious practical problems
if discretized explicitly.

The subject that inspired us for this research is global ocean circulation. It is customary
(e.g., [1]) to split the 3D ocean flow into a depth-averaged barotropic part, which is described
by the above equations, and the 3D baroclinic deviations from it. The barotropic flow com-
ponent contains amongst others fast surface gravity waves which for many applications are
not dynamically important. By assuming a rigid lid, an effectively incompressible flow is
obtained which implies that surface waves have an infinite speed. The domain is multiply
connected due to the presence of islands and continents. The main-stream discretization
method for ocean circulation is the finite difference method. For example, all ocean sim-
ulation codes based on the Brian–Cox model [1] are finite difference based. In the finite
difference method, the integral conditionsmustbe discretized explicitly, which in practice,
e.g., limits the number of islands that are included in the topography.

In this paper we will show that the integral conditions can be discretized implicitly in
a finite element setting. This leads to a numerical scheme that is almost as simple as for
simply connected domains. We will regard a simplified, although not unrealistic model that
suffices to illustrate our ideas.

Two related papers that discuss finite element discretizations of stream-function prob-
lems on multiply-connected domains are [10, 11]. The first paper studies the incompressible
Euler equations. For this problem the values on solid boundaries can be determined from
the initial distribution of the vorticity. This method is not applicable to viscous flow, a case
that is covered by the theory we will present. The second paper studies the homogeneous in-
compressible Navier–Stokes equations with inhomogeneous viscous boundary conditions.
We discuss the inhomogeneous equations with homogeneous boundary conditions, which
gives rise to different integral conditions. The approach we propose in Section 4 is to a
certain extent analogous to the one suggested in [11].

The outline of this paper is as follows. Section 2 describes a simple mathematical model
for ocean circulation and derives the stream-function-vorticity formulation of the model and
integral conditions to determine the stream-function on islands and continents. Section 3
discusses the question of uniqueness of the solution and makes a comparison with other
approaches in literature. Section 4 describes the discretization of the problem with the finite
element method, using a special choice for the test functions on islands. Section 5 gives
computational details and makes some choices specific to ocean circulation. In particular,
it describes how the discrete system can be obtained using spherical coordinates. Section 6
explains the extreme simplicity of implementation of the method we propose. Section 7
describes the results of our ideas applied to a more or less realistic ocean circulation problem.

2. EQUATIONS OF MOTION

For steady barotropic flow in a homogeneous ocean with constant depth and nearly in
geostrophic equilibrium, the momentum and continuity equations can be written as

− f v = −g
∂h

∂x
− ru + A∇2u + F1 (1)

+ f u = −g
∂h

∂y
− r v + A∇2v + F2 (2)
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∂u

∂x
+ ∂v

∂y
= 0, (3)

whereu, v are velocities inx, y directions,h is water level,g is acceleration due to gravity,
r is a positive bottom-friction coefficient,A is the lateral viscosity,F1, F2 are external
forces, andf is the Coriolis parameter, which for large-scale geophysical flows will be a
function of the North–South coordinatey. In that case, the equations have to be formulated
in spherical coordinates (see Section 5 below). This system of equations is not essentially
different from the Navier–Stokes equations for 2D incompressible flow, withA playing
the role of viscosity and with an added Newtonian friction termr v. The omission of time
derivatives and advective terms does not seem to be essential for the method described
here.

Boundary conditions state that the normal velocity component on solid boundaries is
zero. If the viscosityA is nonzero, the tangential velocity will also be zero (no-slip).

By introducing a stream-function, the continuity equation can be satisfied automatically.
A stream-functionψ and a vorticityζ can be defined such that

u = ∂ψ

∂y
, v = −∂ψ

∂x
, ζ = ∂v

∂x
− ∂u

∂y
. (4)

The stream-function-vorticity equations then become

−r ∇2ψ − β
∂ψ

∂x − A∇2ζ = ∇ × F inÄ,

∇2ψ + ζ = 0,
(5)

whereβ = ∂ f /∂y. The no-normal-flow boundary conditions state that the stream-function
is constant on each continent,

ψ = Ck on0k, k = 1, . . . , nk, (6)

nk is the number of continents. The values of the constants are not specified. One constant
can be picked arbitrarily, e.g.ψ = 0 on01. If the viscosity is nonzero, there is an additional
no-slip condition which says that the tangential velocity component is zero. In terms of the
stream function, this means

∂ψ

∂n
= 0 on0k, k = 1, . . . , nk. (7)

There are usually no conditions on the vorticity.
The original equations (1), (2) cannot be reconstructed unambiguously from (5). By

adding an arbitrary function ofx to Eq. (1), or an arbitrary function ofy to (2), we can still
get the same Eq. (5). The waterlevelh can be determined from stream function and vorticity
using (1) and (2) by integrating along an arbitrary path. In order to obtain a unique result
using two different paths, the integral along the contour0k formed by joining the two paths
should be zero:∮

0k

g
∂h

∂s
ds = −

∮
0k

( f v · n + r v · s+ A∇2v · s+ F · s) ds = 0. (8)
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For a contour encircling a water region, this can easily be shown to be true using (5).
However, if a continent is enclosed within the contour, (8) has to be enforced as an additional
condition. Using the boundary conditions, it reduces to∮

0k

r
∂ψ

∂n
+ A

∂ζ

∂n
ds = −

∮
0k

F · sds. (9)

Note that the Coriolis parameterf does not occur in this condition. Whether Eqs. (5)–(7),
plus the circulation condition (9) have a unique solution is a question that will be addressed
in the next section.

3. UNIQUENESS OF SOLUTION

For the case without lateral friction (A= 0), Kamenkovich [6] presented an argument
that the above-mentioned problem has a unique solution. The argument is approximately
as follows. The solution can be split into components

ψ = ψ0 +
nk∑

k=1

Qkψk (10)

and similarly foru, v, h, ζ with constantsQk to be determined. Here,ψ0 satisfies the
inhomogeneous equations(F 6= 0) with homogeneous boundary conditions (allCk = 0),
whereasψk satisfies the homogeneous equations(F = 0) with boundary conditionsψk = δki

on0i , i = 1, nk. All components are zero on01.
Introducing (10) into (9) gives a set of equations from whichQk can be solved, provided

its determinant is nonzero, or, in other words, the solution is unique.
Uniqueness can be proved more generally by showing that an unforced solution (F = 0)

would be exactly zero. First of all, the maximum principle [2] states that such a solution
could not take a maximum anywhere inside the region. Therefore, if a nontrivial solution
exists, it must take its maximum on one of the boundaries, say0N and be constant there. The
maximum principle, again states that then∂ψ/∂n < 0 on this contour, such that, assuming
r > 0, ∮

0N

r
∂ψ

∂n
ds < 0. (11)

However, this is in contradiction with (9) forF = 0. Therefore the homogeneous problem
has a zero solution only and the solution (10) must be unique.

3.1. Comparison with Other Approaches

Bryan and Cox [1], in their GFDL (or MOM) model, use the Kamenkovich theory in
a straightforward way. The contributionsψk, k = 1, nk in (10) are evaluated once and for
all. The componentψ0 is determined in each time step using the actual forcing and the
coefficientsQk are determined by solving the circulation conditions at each time step.

Godfrey [4] and Wajsowicz [14] use a specialized approach using typical properties of
oceanic flows. They choose a contour not along continent boundaries but containing open-
sea parts. Then (8) applies. Choosing a contour PQRS such that QR and SP are on Eastern
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boundaries, where boundary layers do not occur and the normal velocity is zero, and PQ
and RS along latitude circles, they obtain explicit expressions for the flow

ψP − ψQ = ψS − ψR =
∮

F · s ds

fP Q − fRS
, (12)

where friction has been neglected away from Western boundaries. This can be used to
relate the values of the stream-function at different continents. The method is not generally
applicable (particularly to nonrotating flows).

3.2. Case with Lateral Friction

If lateral friction is taken into account (A 6= 0), the construction of the solution can be done
in the same way as (10). The number of unknown constantsCk is the same as before. The
boundary conditions for componentψk are as before, but with added Neumann condition
∂ψ/∂n = 0 on each solid boundary. Equation (9) then becomes∮

0k

A
∂ζ

∂n
ds = −

∮
0k

F · sds. (13)

It is less easy to show that the solution constructed this way is unique.
In [3], Glowinski and Pironneau also studied uniqueness of two-dimensional flow prob-

lems. Their set of equations is different from ours. Moreover, their technique to prove
uniqueness is not applicable to a nonself-adjoint problem, which we have due to the pres-
ence of Coriolis terms.

4. DISCRETIZATION

The main difficulties in discretizing Eqs. (5)–(7) and (9) are posed by the boundary
condition (6) and the integral condition (9). In this section we will show that these conditions
can be imposed in a natural way in the finite element method.

The weak form of (5) is given by∫
Ä

r ∇χ · ∇ψ − βχ
∂ψ

∂x
+ A∇χ · ∇ζdÄ =

∫
Ä

χ∇ × F dÄ +
nk∑

k=1

∮
0k

r χ
∂ψ

∂n
+ Aχ

∂ζ

∂n
ds

(14)∫
Ä

∇ξ · ∇ψ + ξζdÄ =
nk∑

k=1

∮
0k

ξ
∂ψ

∂n
ds

with χ andξ test functions. The test functions are chosen such that the boundary conditions
can be satisfied.

We define a mesh onÄ onn nodal points and choose a set of independent basis functions
λi so that

λi = δi j in node j . (15)

Approximate solutions̃ψ andζ̃ are now sought as linear combinations of the basis functions:

ψ̃ =
n∑

j =1

ψ̃j λ j , ζ̃ =
n∑

j =1

ζ̃ j λ j . (16)
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In these sums the coefficients̃ψj and ζ̃ j are unknown and have to be determined. Since
λi = δi j in node j the coefficientsψ̃j andζ̃ j are the numerical approximations forψ andζ

in the grid points. Because of this thẽψj should satisfy (6). We can immediately substitute
these conditions into the first sequence in (16). Letµk be defined by

µk =
∑
j ∈0k

λ j . (17)

Substituting yields

ψ̃ =
∑
j ∈Ǟ

ψ̃j λ j +
nk∑

k=1

ψ̃kµk (18)

in which ψ̃k is the value ofψ̃ in the grid points in continent0k. By the notationj ∈ Ǟ we
denote the indices that correspond to sea points. The “sea”Ǟ is the interior of the domain:

Ǟ = Ä
∖ nk⋃

k=1

0k. (19)

We now have different sets of basis functions for approximatingψ and for approximating
ζ . Forψ we have the set

λ j , ∀ j ∈ Ǟ
⋃

µk, k = 1, 2, . . . , nk, (20)

and forζ we have the original set

λ j , j = 1, 2, . . . , n. (21)

Note that

µk = 1 on0k (22)

if the λ j are piecewise polynomial, which is the standard choice in the finite element
method. We apply the finite element method to (14). For the test functionsχ we take the
basis functions (20) and for the test functionsξ we take (21) and substitute these in (14).
By this choice the boundary conditions can be satisfied in a natural way. This would not be
possible if we would take (21) for the test functionsχ and (20) for the test functionsξ . The
sequences (18) and the integral condition (9) are also substituted into (14). By also taking
into account the properties of the basis functions, we obtain the following system of linear
equations:

∑
j ∈Ǟ

∫
r ∇λi · ∇λ j − βλi

∂λ j

∂x
dÄψ̃j +

nk∑
k=1

∫
r ∇λi · ∇µk − βλi

∂µk

∂x
dÄψ̃k

+
n∑

j =1

∫
A∇λi · ∇λ j dÄ ζ̃ j =

∫
λi ∇ × F dÄ ∀i ∈ Ǟ, (23)
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∑
j ∈Ǟ

∫
r ∇µi · ∇λ j − βµi

∂λ j

∂x
dÄψ̃j +

nk∑
k=1

∫
r ∇µi · ∇µk − βµi

∂µk

∂x
dÄψ̃k

+
n∑

j =1

∫
A∇µi · ∇λ j dÄ ζ̃ j =

∫
µi ∇ × F dÄ −

∮
0i

F · s ds, i = 1, 2, . . . , nk, (24)

and

∑
j ∈Ǟ

∫
∇λi · ∇λ j dÄψ̃j +

nk∑
k=1

∫
∇λi · ∇µk dÄψ̃k +

n∑
j =1

∫
λi λ j dÄ ζ̃ j

=
nk∑

k=1

∮
0k

λi
∂ψ

∂n
ds, i = 1, 2, . . . , n. (25)

The derivation of this linear system is outlined in more detail in the Appendix. In the
above equations there are three different types of summations:∑

j ∈Ǟ

, a summation over the sea-grid points,

nk∑
i =1

, a summation over the continents, and

n∑
j =1

, a summation over all grid points.

Note that the right-hand side of the last equation is equal to zero in case of lateral friction.
If there is no lateral friction, the values for the stream-function can be determined from
(23), (24) only.

5. EVALUATION OF THE ENTRIES OF THE SYSTEM MATRIX

AND OF THE RIGHT-HAND SIDE VECTOR

To evaluate the coefficients of the system we have to make an explicit choice for the basis
functions. Once the basis functions are explicitly known, the integrals can be evaluated
using a numerical integration rule.

We want to solve Eqs. (5) on a global domain, with a realistic topography. Since our
domain is spherical it is convenient to use spherical coordinates. We first recall some
definitions. The derivatives in the latitudinal directionα and in the longitudinal directionθ
are given by

∂

∂x
= 1

Rcosθ

∂

∂α
,

∂

∂y
= 1

R

∂

∂θ
(26)

with R the earth radius (assumed constant). The determinant of the JacobianJ of the
coordinate transformation is

|J| = R2 cosθ. (27)
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The divergence of a vector field is defined by

∇ · F = 1

Rcosθ

(
∂

∂α
F1 + ∂

∂θ
F2 cosθ

)
, (28)

and the curl of a vector field∇ × F by

∇ × F = 1

Rcosθ

(
∂F2

∂α
− ∂F1 cosθ

∂θ

)
. (29)

The above relations can be substituted into (23)–(25) to get the linear system for the coor-
dinate system we are interested in. E.g., substituting yields∫

∇λi · ∇λ j dÄ =
∫

∂λi

∂α

1

cosθ

∂λ j

∂α
+ ∂λi

∂θ
cosθ

∂λ j

∂θ
dÄ. (30)

All but one other term can be rewritten in an equally straightforward way.
The original spherical domain is mapped onto a rectangular domain by the change to

spherical coordinates. This domain is decomposed into triangles,

Ä =
ne⋃

e=1

Äe (31)

in whichÄe are the triangular subdomains, the “elements,” andne is the number of elements.
The nodal points of the mesh are in the corners of the triangles. The basis functionsλi are
now chosen to be piecewise linear, i.e. linear inside each element. Sinceλi = 0 in all nodes,
except in nodei , it is nonzero only inside the six elements that have nodei as a corner.
Note that the basis functions are piecewise linear in the coordinates (α, θ ), not in (x, y).
The conditionλi = δi j in node j yields three linear equations for the coefficients of eachλi

inside an element. Sinceλi is linear inside an element three unknown coefficients must be
determined. The three linear equations give sufficient conditions for this.

The integrals can be evaluated by evaluating them per element and adding the results
together, ∫

int dÄ =
ne∑

e=1

∫
int dÄe (32)

with int an unspecified integrand. The element integrals are computed by a simple Newton–
Cotes integration rule, ∫

int dÄe ≈ Area

3
(int1 + int2 + int3), (33)

with int1, int2, and int3 the values of the integrand in the corners of the element.
In actual computations it is not necessary to explicitly evaluate integrals involving the

basis functionsµk. All integrals can be computed by evaluating integrals with the functions
λi only, by making use of the definition (17) ofµk. For example,∫

r ∇λi · ∇µk − βλi
∂µk

∂x
dÄ =

∑
j ∈0k

∫
r ∇λi · ∇λ j − βλi

∂λ j

∂x
dÄ.



            

38 VAN GIJZEN, VREUGDENHIL, AND OKSUZOGLU

The only term that requires some more thought is
∮

0k
F · sds. The integral can be evaluated

as it is, but both the coordinate transformation and the directional integration are not trivial
to do and therefore are error prone. To avoid errors we apply Stokes theorem to turn the
contour integral into an area integral,∮

0k

F · s ds = −
∫

∇ × F d0k. (34)

With
∫

int d0k, we denote integration over the area enclosed by0k, hence, integration over
continentk. To evaluate these integrals we can extend the grid over the continents as well.
We denote the extended domain, i.e. sea, coasts, and the interior of the continents, byÄ̂.
Linear basis functions are defined on the continents in the same way as in the seas. The
definition (17) ofµk now also includes summation of theλ j in the interior of0k. The
right-hand side in (24) can now be rewritten as∫

µk∇×F dÄ−
∮

0k

F ·sds=
∫

µk∇×F dÄ+
∫

0k

∇×F d0k =
∫

µk∇×F dÄ̂. (35)

Here we have made use of the fact thatµk = δik . Substituting (17) yields∫
µk∇ × F dÄ̂ =

∑
j ∈0k

∫
λ j ∇ × F dÄ̂. (36)

Here j ∈ 0k also includes nodes in the interior of0k. Integrals of the type
∫

λ j ∇ × F dÄ̂

already had to be evaluated for nodesj that are in the sea. The only difference between
land and sea nodes is that the discrete nodal values of the right-hand side of nodes that are
inside the same continent must be added together to get the discrete right-hand side for the
complete continent.

For all other integrals it is of no consequence whetherµk is defined on the edge of a
continent or on the whole continent. The integrands contain either derivatives ofµk, which
are equal to zero on a continent, or products with basis functionsλ j which are zero on the
continent. Hence, the interior of a continent gives no contribution to any of the integrals
other than for the right-hand side.

At first sight there seems little advantage in including land points in the grid. The evalu-
ation of a contour integral is replaced by the evaluation of an area integral, which is more
expensive. Integrals are evaluated in the interior of continents where there is no contribu-
tion. However, hardly any distinction needs to be made any more between land and sea
points. This simplifies implementation. And there is one other big advantage. By including
the interior of the continents in the grid it is possible to keep the matrix structured, which
makes operations with the matrix less expensive. This will be explained in the next section.

6. IMPLEMENTATION

Continents give rise to a large bandwidth of the matrix. The reason is that the basis func-
tionsµk have large support. This property makes the solution of the linear system expensive
if solved with a direct solution method like Gaussian elimination. Therefore, iterative solu-
tion methods, which do not suffer from a large bandwidth, are the preferred choice. These
methods only address the matrix for performing matrix–vector multiplications. There are
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good reasons to try the keep the matrix structured; see [13]. The most important of these is
that indirect addressing can be avoided if the matrix has only a few diagonals with nonzero
elements. A structured grid gives rise to such a matrix. The continents destroy the structure
in the matrix, but in this section we will show how the linear system can be solved iteratively,
by performing matrix–vector products with astructuredmatrix, despite the continents.

As was explained in the previous section, the grid can be extended to include also land
points. Moreover, integrals involvingµk’s can be computed by evaluating integrals with
λ j ’s only, by making use of the definition ofµk. If we would ignore the continents we would
obtain a matrixK of the following (block)-structure:

K =
(

r L − C AL
−L M

)
. (37)

In this expression we can recognize the discrete counterparts of the various differential
operators:

∇2 → L , β
∂

∂x
→ C, 1 → M . (38)

These matrices are of sizen×n, with n the number of nodes. We know that, because of (6),
the nodal values of the stream-function on each continent must be equal to each other. On
each continent we define a “master” node; hence, the nodal values of the stream-function
must be equal to the value of the stream-function in the master node. Let the vectorψ̄

contain only the values of the stream-function in the master nodes (including values in sea
nodes), and let the vectorψ contain the values of the stream-function in all nodes of the
grid, including all land points. These two vectors are related by

Pψ̄ = ψ (39)

in which the matrixP is defined as follows. The columns that correspond to sea-points are
just basis-vectors:

Pj = ej ∀ j ∈ Ǟ. (40)

And a column that corresponds to the “master” unknown on a continent is the sum of the
basis vectors corresponding to the unknowns on the continent:

Pk =
∑
j∈Γk

ej . (41)

As was argued in the previous section, given the fact that theµk’s are the sum of allλ j ’s on
the corresponding continent, the nodal values of discretized curl of the external force field,
which we will denote byf, should be added together on each continent. With the above
definition ofP this can be denoted by

f̄ = PTf. (42)

The same arguments hold for the discrete differential operators, e.g.,

L̄ = PTL . (43)
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Hence, the system we actually have to solve is

(
PT O
O I

)(
r L − C AL

−L M

)(
P O
O I

)(
ψ̄

ζ

)
=
(

PT O
O I

)(
f
0

)
. (44)

For iterative solution methods one only has to multiply with the system matrix. This oper-
ation can be performed in three steps:

• Give all “slave” nodes the value of the “master” node:ψ = Pψ̄ .

• Multiply ( ψ

ζ
) by (37). (Structured matrix-vector product).

• Add up the values of the stream-function on each continent:ψ̄ = PTψ .

This approach makes the implementation of the boundary conditions for continents ex-
tremely simple. One can first discretize Eq. (14) without taking the boundary condition (6)
into account. The boundary condition (6) is taken care of in the matrix–vector multiplica-
tions by means of two extremely simple operations on vectors.

In global ocean circulation models one, of course, has the periodic conditions

ψ(−π, θ) = ψ(π, θ), ζ(−π, θ) = ζ(π, θ). (45)

These conditions can be taken into account in the same way as (6) by means of a master-
slave hierarchy between the nodes. In fact, we have implemented the periodic condition in
this manner.

We want to stress the extreme simplicity and elegance of the method described above.
The “unnatural” evaluation of wind-stresson landresults in an easily and straightforwardly
implementable method. Moreover, a structured grid results in a structured matrix (if the
nodes are properly ordered).

7. EXAMPLE

In this section we will describe the results of two simulations of global ocean circulation.

7.1. Choice of Parameters

For realistic simulations we need the following information and data:

• Topography information,
• The external force field,
• Earth radiusR,
• Coriolis parameterβ,
• Lateral viscosity parameterA,
• Bottom friction coefficientr .

We have extracted the topography information from a datafile provided by NCAR.1 This
datafile gives depth-information with a resolution of one degree. We have used a resolution
of 2◦. Our grid ranges from 89◦ South to 89◦ North, thus circumventing the singularity at
the poles due to the use of spherical coordinates. From the depth information we determined

1http://www.scd.ucar.edu/dss/datasets/ds750.1.html.
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FIG. 1. Average wind field in January.

whether our grid points are either land or water by linear interpolation. Next, we determine
which grid points belong to the same continent by a simple region-growing algorithm; see,
e.g., [9].

The external force field relates to the wind stress by

F = 1

Hρ
τ. (46)

We have used the long-term averaged data of the wind stressτ in January, collected by
Hellerman and Rosenstein [5]. Figure 1 shows the wind field and the different islands and
continents. There is a total number of 26 islands and continents.

The water densityρ is 1000 kg/m2, and we have taken for the average depth of the ocean
H = 500 m.

The Earth radius and Coriolis parameter are known to beR= 6.4 × 106 m andβ =
cosθ · 2Ä/R= 2.3 × 10−11 cosθ(ms)−1, with Ä the angular velocity of the Earth.

The lateral viscosityA is not well known. Estimations range from 10–105 m2/s. We have
neglected lateral viscosity in the first experiment and takenA= 500 m2/s in the second
experiment. The latter value has been taken from [8].

The bottom friction arises from Ekman boundary layers at the bottom, and is related
to the vertical eddy-viscosity coefficientAv, which is again not very well known(10−1–
10−5 m2/s):

r =
√

Av f /2H . (47)
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BecauseAv is not well known, the bottom frictionr is usually approximated by a parameter
that does not depend on latitude or longitude, despite the dependency on the Coriolis
parameter( f = 2Ä sinθ). The parameterr plays the part of a diffusion coefficient in (5)
and occurs therefore in the mesh–Peclet number defined as

Pe= hβRcosθ

r
(48)

with h the mesh size, for our gridh = π/90. We have chosenr = 5× 10−6 s−1. This value
is physically realistic and yields a maximal mesh–Peclet number slightly greater than one,
which is sufficiently small to avoid spatial oscillation (“wiggles”).

We have assumed a rather shallow ocean with an average depth of 500 m. If we would
have assumed a deeper ocean, the bottom friction would be correspondingly smaller and
it would be harder to attain numerical stability. The velocities we obtain for our choice of
parameters are of the correct order of magnitude, i.e. centimeters per second.

The stream-function should be prescribed on one island or continent. We have prescribed
the stream-function to be zero on the largest continents, i.e. America, Eurasia, and Africa.
Our grid is too coarse to resolve Bering Strait. The results are not influenced by the choice
on which continent the stream-function is prescribed. Prescribing on the largest continent
has the advantage that the linear system becomes better conditioned and, hence, easier to
solve by an iterative method. The iterative solution method we used is GMRESR [12],
combined with diagonal scaling.

7.2. Results

The model we have used as our test problem is too simplified to expect very realistic
results. E.g., bottom topography, nonlinear effects, and three dimensional effects are all
neglected. Our model mainly gives a balance between wind stress, Coriolis force, and
bottom friction. The effect of lateral viscosity is neglected in the first experiment and small
in the second experiment. The surface currents are wind driven and should, therefore, more
or less follow the wind field. The currents near the equator deviate most prominently from
this global pattern.

Figure 2 shows a contour plot of the stream-function. The qualitative result is good, all
main surface currents are present.

The velocities can be computed from the values of the stream-function by numerical
differentiation. This result is show in Fig. 3. Some important currents and phenomena that
are well captured are:

• western boundary currents, due to the Coriolis force,
• the Antarctic Circumpolar Current, the strongest current,
• the Gulf stream, the most important current for the climate in Northern Europe, and
• back-flow around the tip of Africa.

In the second experiment we also included the effect of lateral viscosity. As was remarked
before, this effect is small, and the graphical results are not significantly different from the
results of the first experiment.
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FIG. 2. Stream-function, contour plot.

FIG. 3. Velocity field.
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8. CONCLUDING REMARKS

In this paper we have described a method for discretizing and solving stream-function
problems on multiply connected domains. We have applied this method to a simple global
ocean circulation model.

8.1. Application to More Complicated Models

An important question is: Can the approach we have taken to implement the boundary
conditions for the stream-function also be applied to more complicated models? The answer
will depend on the model of course. We have also implemented our ideas in a model that de-
scribes unsteady barotropic flow and that includes (nonlinear) advective terms. In this model,
the no-slip condition can be implemented in exactly the same way as described in this paper.

8.2. Application to the Finite Difference Method

The finite difference method is widely used for simulating ocean circulation. The question
whether our ideas can be incorporated into the finite difference method is therefore of
particular interest. Looking at the final algorithm, described in Section 6, the obvious analog
for the finite difference method would be:

• Discretize the equations with the finite difference method without taking the islands
into account. This gives a matrix similar to (37).

• Take the islands into account by making a “master–slave” hierarchy between the nodes.
• Solve system (44).

A sound mathematical basis for this procedure is completely lacking, and more research
in this direction should be carried out.

8.3. Conclusions

Our method has the following features and advantages:

• Integral conditions are implicitly taken into account in the solution phase, by making
a “master–slave” node hierarchy per island or continent. It is not necessary to determine
explicit paths of integration.

• The method allows arbitrarily many islands or continents, including extra islands only
changes the “master–slave” relations between nodes.

• No distinction needs to be made between “land” and “sea” grid points in the discretiza-
tion.

• A structured grid yields a structured matrix (if the nodes are properly ordered).

Finally, we want to stress the elegance and simplicity of the method.

APPENDIX: DETAILED DERIVATION OF THE LINEAR SYSTEM OF EQUATIONS

Choosingχ = λi , with i ∈ Ǟ and substituting this in the first equation of (14), we obtain
the equations
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∑
j ∈Ǟ

∫
r ∇λi · ∇λ j − βλi

∂λ j

∂x
dÄ ψ̃ j +

nk∑
k=1

∫
r ∇λi · ∇µk − βλi

∂µk

∂x
dÄ ψ̃k

+
n∑

j =1

∫
A∇λi · ∇λ j dÄ ζ̃ j

=
∫

λi ∇ × F dÄ +
nk∑

k=1

∮
0k

r λi
∂ψ

∂n
+ Aλi

∂ζ

∂n
ds ∀i ∈ Ǟ. (49)

Choosingχ = µi , i = 1, 2, . . . , nk and substituting these into the first equation of (14) yields

∑
j ∈Ǟ

∫
r ∇µi · ∇λ j − βµi

∂λ j

∂x
dÄ ψ̃ j +

nk∑
k=1

∫
r ∇µi · ∇µk − βµi

∂µk

∂x
dÄ ψ̃k

+
n∑

j =1

∫
A∇µi · ∇λ j dÄ ζ̃ j

=
∫

µi ∇ × F dÄ +
nk∑

k=1

∮
0k

r µi
∂ψ

∂n
+ Aµi

∂ζ

∂n
ds, i = 1, 2, . . . , nk. (50)

Finally, choosingξ = λi , i = 1, 2, . . . , n and substituting these into the second equation of
(14) yields

∑
j ∈Ǟ

∫
∇λi · ∇λ j dÄ ψ̃ j +

nk∑
k=1

∫
∇λi · ∇µk dÄ ψ̃k +

n∑
j =1

∫
λi λ j dÄ ζ̃ j

=
nk∑

k=1

∮
0k

λi
∂ψ

∂n
ds, i = 1, 2, . . . , n. (51)

Note that

λi = 0 on0k, k = 1, . . . , nk ∀i ∈ Ǟ (52)

and

µk = δik on0i , i = 1, . . . , nk (53)

Substituting (52), (53) and the circulation condition (9) into (49), (50), and (51) yields the
resulting system of linear equations (23)–(25).
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