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The no-normal-flow condition states that the stream-function is constant at solid
boundaries. For multiply connected domains these (unknown) constants differ per
boundary and must be determined from integral conditions. This complicates
discretization and solution of the problem considerably. In this paper we describe
a simple, elegant, and systematic way for solving this problem within the context
of a finite element discretization and apply our ideas to global ocean circulation
simulation. © 1998 Academic Press
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1. INTRODUCTION

In 2D incompressible flow simulations, use is often made of the vorticity-stream funct
formulation (e.g., [7]). The main advantage is a reduction from three partial differen
equations for the primitive variables (pressure and two velocity components) to either
(fourth-order) partial differential equation for the stream-function or to a set of two (seco
order) equations for the scalar quantities vorticity and stream function. Another advan
is that the continuity equation will be satisfied automatically.

A drawback of the introduction of a stream-function is that the boundary conditions
solid boundaries get somewhat more complicated. The condition of no normal flow img
that the stream-function must be constant. On a simply connected domain, with only
boundary, one can simply choose the constant to be zero (or arbitrary). However, if
domain is multiply connected, there are several (internal) boundaries and one has to
mine the constants at each of the boundaries. These constants cannot be determine
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FINITE ELEMENT DISCRETIZATION 31

the partial differential equations for stream-function and vorticity but additional integ
conditions can be derived to relate stream-functions on the different boundaries to
other. In numerical schemes, these integral conditions may pose serious practical prot
if discretized explicitly.

The subject that inspired us for this research is global ocean circulation. It is custor
(e.g.,[1]) to splitthe 3D ocean flow into a depth-averaged barotropic part, which is descr
by the above equations, and the 3D baroclinic deviations from it. The barotropic flow c
ponent contains amongst others fast surface gravity waves which for many application
not dynamically important. By assuming a rigid lid, an effectively incompressible flow
obtained which implies that surface waves have an infinite speed. The domain is mul
connected due to the presence of islands and continents. The main-stream discreti:
method for ocean circulation is the finite difference method. For example, all ocean :
ulation codes based on the Brian—Cox model [1] are finite difference based. In the f
difference method, the integral conditiomsistbe discretized explicitly, which in practice,
e.g., limits the number of islands that are included in the topography.

In this paper we will show that the integral conditions can be discretized implicitly
a finite element setting. This leads to a numerical scheme that is almost as simple &
simply connected domains. We will regard a simplified, although not unrealistic model 1
suffices to illustrate our ideas.

Two related papers that discuss finite element discretizations of stream-function p
lems on multiply-connected domains are [10, 11]. The first paper studies the incompres
Euler equations. For this problem the values on solid boundaries can be determined
the initial distribution of the vorticity. This method is not applicable to viscous flow, a ca
thatis covered by the theory we will present. The second paper studies the homogenea
compressible Navier—Stokes equations with inhomogeneous viscous boundary condi
We discuss the inhomogeneous equations with homogeneous boundary conditions, \
gives rise to different integral conditions. The approach we propose in Section 4 is
certain extent analogous to the one suggested in [11].

The outline of this paper is as follows. Section 2 describes a simple mathematical m
for ocean circulation and derives the stream-function-vorticity formulation of the model :
integral conditions to determine the stream-function on islands and continents. Secti
discusses the question of uniqueness of the solution and makes a comparison with
approaches in literature. Section 4 describes the discretization of the problem with the 1
element method, using a special choice for the test functions on islands. Section 5
computational details and makes some choices specific to ocean circulation. In partic
it describes how the discrete system can be obtained using spherical coordinates. Sec
explains the extreme simplicity of implementation of the method we propose. Sectic
describes the results of our ideas applied to a more or less realistic ocean circulation pro|

2. EQUATIONS OF MOTION

For steady barotropic flow in a homogeneous ocean with constant depth and nea
geostrophic equilibrium, the momentum and continuity equations can be written as

oh
—fv:—ga—x—ru+AV2u+F1 (1)

oh
+fu=—ga—y—rv+AV2v+Fz (2)
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Ju  dv
Ix + By 0, (€©)]

whereu, v are velocities irx, y directionsh is water levelg is acceleration due to gravity,
r is a positive bottom-friction coefficient is the lateral viscosityF;, F, are external
forces, andf is the Coriolis parameter, which for large-scale geophysical flows will be
function of the North—South coordinageIn that case, the equations have to be formulate
in spherical coordinates (see Section 5 below). This system of equations is not esser
different from the Navier—Stokes equations for 2D incompressible flow, wifilaying
the role of viscosity and with an added Newtonian friction tekmThe omission of time
derivatives and advective terms does not seem to be essential for the method des
here.

Boundary conditions state that the normal velocity component on solid boundarie
zero. If the viscosityA is nonzero, the tangential velocity will also be zero (no-slip).

By introducing a stream-function, the continuity equation can be satisfied automatic
A stream-function) and a vorticityz can be defined such that

0 0 d ou
:—‘Sﬁ7 U:——w’ :_U__ (4)
ay aX ax  ay
The stream-function-vorticity equations then become
vy — B — AV =V x F inQ, )

V2 +¢ =0,

whereg = df /dy. The no-normal-flow boundary conditions state that the stream-functi
is constant on each continent,

Y =Ck only, k=1,...,n, (6)

nk is the number of continents. The values of the constants are not specified. One cor
can be picked arbitrarily, e.g: = 0 onI';. If the viscosity is nonzero, there is an additiona
no-slip condition which says that the tangential velocity component is zero. In terms of
stream function, this means

Z;—lrplzo only, k=1,...,n. 7
There are usually no conditions on the vorticity.

The original equations (1), (2) cannot be reconstructed unambiguously from (5).
adding an arbitrary function of to Eq. (1), or an arbitrary function gfto (2), we can still
get the same Eq. (5). The waterleligdan be determined from stream function and vorticit
using (1) and (2) by integrating along an arbitrary path. In order to obtain a unique re
using two different paths, the integral along the confouformed by joining the two paths
should be zero:

h
j{g%d8=— (fv-n+rv.-s+AV?.s+F.9ds=0. ®)
Ik

'k
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For a contour encircling a water region, this can easily be shown to be true using
However, if a continent is enclosed within the contour, (8) has to be enforced as an addit
condition. Using the boundary conditions, it reduces to

%r—erA ds_—j{F-sds (9)
Tk an Tk

Note that the Coriolis parametérdoes not occur in this condition. Whether Egs. (5)—(7
plus the circulation condition (9) have a unique solution is a question that will be addre:
in the next section.

3. UNIQUENESS OF SOLUTION

For the case without lateral frictiorA(= 0), Kamenkovich [6] presented an argumen
that the above-mentioned problem has a unique solution. The argument is approxim
as follows. The solution can be split into components

¥ =10+ Y Qui (10)

k=1

and similarly foru, v, h, ¢ with constantsQyx to be determined. Here), satisfies the
inhomogeneous equatioits # 0) with homogeneous boundary conditions @l=0),
whereag)y satisfies the homogeneous equatighs- 0) with boundary conditiongy = §;
onTj,i =1, ng. Allcomponents are zero dy.

Introducing (10) into (9) gives a set of equations from whighcan be solved, provided
its determinant is nonzero, or, in other words, the solution is unique.

Unigueness can be proved more generally by showing that an unforced sokutiof)(
would be exactly zero. First of all, the maximum principle [2] states that such a solut
could not take a maximum anywhere inside the region. Therefore, if a nontrivial solut
exists, it must take its maximum on one of the boundaries"seand be constant there. The
maximum principle, again states that thiafa/dn < 0 on this contour, such that, assuming
r >0,

% r%ds<0. (12)
I'n

an

However, this is in contradiction with (9) fdt = 0. Therefore the homogeneous problen
has a zero solution only and the solution (10) must be unique.

3.1. Comparison with Other Approaches

Bryan and Cox [1], in their GFDL (or MOM) model, use the Kamenkovich theory |
a straightforward way. The contributiong, k = 1, ny in (10) are evaluated once and for
all. The componenty is determined in each time step using the actual forcing and t
coefficientsQy are determined by solving the circulation conditions at each time step.

Godfrey [4] and Wajsowicz [14] use a specialized approach using typical propertie
oceanic flows. They choose a contour not along continent boundaries but containing c
sea parts. Then (8) applies. Choosing a contour PQRS such that QR and SP are on E
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boundaries, where boundary layers do not occur and the normal velocity is zero, anc
and RS along latitude circles, they obtain explicit expressions for the flow

$F-sds

- 12
fpo — frs (12)

Vp—VYQ=VYs—Yr=
where friction has been neglected away from Western boundaries. This can be us
relate the values of the stream-function at different continents. The method is not gene
applicable (particularly to nonrotating flows).

3.2. Case with Lateral Friction

If lateral friction is taken into accoun®(+ 0), the construction of the solution can be don
in the same way as (10). The number of unknown const@nts the same as before. The
boundary conditions for componei are as before, but with added Neumann conditio
ay/on =0 on each solid boundary. Equation (9) then becomes

f{ Aa—gds=—7§ F.sds (13)
Tk an Tk

Itis less easy to show that the solution constructed this way is unique.

In [3], Glowinski and Pironneau also studied uniqueness of two-dimensional flow pr
lems. Their set of equations is different from ours. Moreover, their technique to pr
unigueness is not applicable to a nonself-adjoint problem, which we have due to the |
ence of Coriolis terms.

4. DISCRETIZATION

The main difficulties in discretizing Egs. (5)—(7) and (9) are posed by the bound
condition (6) and the integral condition (9). In this section we will show that these conditic
can be imposed in a natural way in the finite element method.

The weak form of (5) is given by

/rVX-Vw—ﬂX%—i—AV)pV{dQ:/xVdeQ—i—Z]{r){——FAx—;ds
Q X

(14)
/vg.w+s;d9 Z g—ds
Q

with y andé¢ test functions. The test functions are chosen such that the boundary condit
can be satisfied.

We define a mesh a2 onn nodal points and choose a set of independent basis functic
A So that

Ai =& innodej. (15)

Approximate solutiong andZ are now sought as linear combinations of the basis functior

n n

v =2 T 1= G4 (16)
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In these sums the coefficiernf§ and g are unknown and have to be determined. Sinc
Ai = &ij in nodej the coefficients); aNndgj are the numerical approximations fgrand¢

in the grid points. Because of this tiie should satisfy (6). We can immediately substitut
these conditions into the first sequence in (16).ebe defined by

=Y Aj. (17)
jelk
Substituting yields
~ ~ nk ~
V= Uik + Y P (18)
jeQ k=1

in which &k is the value ofj in the grid points in continerity. By the notationj € Qwe
denote the indices that correspond to sea points. The Resthe interior of the domain:

Q=0Q\ U k. (19)
k=1

We now have different sets of basis functions for approximatirend for approximating
¢. Foryr we have the set

r.o Vie@mek=12_...n (20)
and for¢ we have the original set
A, j=12...,n (21)
Note that
we=1 onTy (22)

if the A; are piecewise polynomial, which is the standard choice in the finite elem
method. We apply the finite element method to (14). For the test funciioms take the
basis functions (20) and for the test functigng/e take (21) and substitute these in (14)
By this choice the boundary conditions can be satisfied in a natural way. This would nc
possible if we would take (21) for the test functigngnd (20) for the test functioris The
sequences (18) and the integral condition (9) are also substituted into (14). By also te
into account the properties of the basis functions, we obtain the following system of lir
equations:

A ~ Ik 0 Lk ~
Z/rvxi Vi = B AR +;/rwi Vi = Bri = Ay

jeEQ

n
+Z/AVM-W,- dQEjz/AivXFdsz Vi e Q, (23)
i=1



36 VAN GIJZEN, VREUGDENHIL, AND OKSUZOGLU

0Aj ~ Ik d Lk ~
Z/I’VM - VAj —ﬂﬂigdgwj +kz;/rv,u«i - Vi —ﬁﬂiwdgwk

jeQ
n
—i—Z/AV,ui -ijdQ{j =/,uiVXFdQ —%F'sds i=12,...,ng, (24)
i=1 i

and

Nk n
Z/wi - VA dQY; +Z/Wi -vukdszlzk+2/)\ixj dQ
Q k=1 i=1

jeQ
Nk
0 .
=27{ Ai—wds, i=12...,n. (25)
— Jn, on

The derivation of this linear system is outlined in more detail in the Appendix. In t
above equations there are three different types of summations:

Y. asummation over the sea-grid points

jeQ

M=

, asummation over the continents, and

[y

sl

, asummation over all grid points
j=1

Note that the right-hand side of the last equation is equal to zero in case of lateral fricf
If there is no lateral friction, the values for the stream-function can be determined fr
(23), (24) only.

5. EVALUATION OF THE ENTRIES OF THE SYSTEM MATRIX
AND OF THE RIGHT-HAND SIDE VECTOR

To evaluate the coefficients of the system we have to make an explicit choice for the t
functions. Once the basis functions are explicitly known, the integrals can be evalu
using a numerical integration rule.

We want to solve Egs. (5) on a global domain, with a realistic topography. Since
domain is spherical it is convenient to use spherical coordinates. We first recall s
definitions. The derivatives in the latitudinal directi@rand in the longitudinal directiof
are given by

0 1 8 8 139

X _ Rcosd da’ 3y RO

(26)

with R the earth radius (assumed constant). The determinant of the Jacbluithe
coordinate transformation is

|J| = R%cosb. (27)
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The divergence of a vector field is defined by

1 9 9
V-F= —F —F,co0s0 |, 28
Rcost <8a 1+ 592 > (28)

and the curl of a vector fiel x F by

. 1 ok d0F1 cosp
" Rcost \ da 30 ’

VxF (29)
The above relations can be substituted into (23)—(25) to get the linear system for the «
dinate system we are interested in. E.g., substituting yields

a1 oo A |
/wi-v/\jdsz=/—'——1+—'cose—’dsz. (30)
da cosd da 6 30

All but one other term can be rewritten in an equally straightforward way.
The original spherical domain is mapped onto a rectangular domain by the chanc
spherical coordinates. This domain is decomposed into triangles,

Ne
e=1

in which Q¢ are the triangular subdomains, the “elements,"rarid the number of elements.
The nodal points of the mesh are in the corners of the triangles. The basis furigtames
now chosen to be piecewise linear, i.e. linear inside each element.)Siacé in all nodes,
except in node, it is nonzero only inside the six elements that have niods a corner.
Note that the basis functions are piecewise linear in the coordinaté3, (ot in (x, y).
The condition\; = §;; in nodej yields three linear equations for the coefficients of each
inside an element. Sincg is linear inside an element three unknown coefficients must
determined. The three linear equations give sufficient conditions for this.

The integrals can be evaluated by evaluating them per element and adding the re
together,

/intdQ = Z/intdsze (32)
e=1

with int an unspecified integrand. The element integrals are computed by a simple New
Cotes integration rule,

" Area . . .
/ intdQe ~ T(mtl + intz + intg), (33)

with inty, inty, and ing the values of the integrand in the corners of the element.

In actual computations it is not necessary to explicitly evaluate integrals involving
basis functiong. All integrals can be computed by evaluating integrals with the functio
Ai only, by making use of the definition (17) pk. For example,

0 Lk OAj
/rwi -Vuk—ﬂkinQz Z/rwi VA —ﬁ)\ia—x‘dsz.

jelk
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The only term that requires some more thougbfpp: -sds. The integral can be evaluated
as it is, but both the coordinate transformation and the directional integration are not tri
to do and therefore are error prone. To avoid errors we apply Stokes theorem to turt
contour integral into an area integral,

%F.Sds:—/VXFdFk. (34)
Tk

With [ intdI'y, we denote integration over the area encloseBihyience, integration over
continentk. To evaluate these integrals we can extend the grid over the continents as:
We denote the extended domain, i.e. sea, coasts, and the interior of the continents,
Linear basis functions are defined on the continents in the same way as in the seas
definition (17) of ux now also includes summation of tfg in the interior ofT'x. The
right-hand side in (24) can now be rewritten as

/,ukaFdQ—j{ F.-sds= /p.kaFdQ+/Vdesz/ukaFdfz. (35)
'k Tk

Here we have made use of the fact that= &x. Substituting (17) yields

/ukaFdQ:Z/AijFdQ (36)

jelk

Herej € I'y also includes nodes in the interior Bf. Integrals of the typg'A;V x Fd$
already had to be evaluated for nodethat are in the sea. The only difference betwee
land and sea nodes is that the discrete nodal values of the right-hand side of nodes th
inside the same continent must be added together to get the discrete right-hand side f
complete continent.

For all other integrals it is of no consequence whetheilis defined on the edge of a
continent or on the whole continent. The integrands contain either derivatiygswhich
are equal to zero on a continent, or products with basis functipméhich are zero on the
continent. Hence, the interior of a continent gives no contribution to any of the integ
other than for the right-hand side.

At first sight there seems little advantage in including land points in the grid. The eve
ation of a contour integral is replaced by the evaluation of an area integral, which is n
expensive. Integrals are evaluated in the interior of continents where there is no cont
tion. However, hardly any distinction needs to be made any more between land anc
points. This simplifies implementation. And there is one other big advantage. By incluc
the interior of the continents in the grid it is possible to keep the matrix structured, wh
makes operations with the matrix less expensive. This will be explained in the next sec

6. IMPLEMENTATION

Continents give rise to a large bandwidth of the matrix. The reason is that the basis f
tionsuk have large support. This property makes the solution of the linear system exper
if solved with a direct solution method like Gaussian elimination. Therefore, iterative sc
tion methods, which do not suffer from a large bandwidth, are the preferred choice. Tl
methods only address the matrix for performing matrix—vector multiplications. There
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good reasons to try the keep the matrix structured; see [13]. The most important of the
that indirect addressing can be avoided if the matrix has only a few diagonals with non
elements. A structured grid gives rise to such a matrix. The continents destroy the stru
in the matrix, but in this section we will show how the linear system can be solved iterativ
by performing matrix—vector products withstructuredmatrix, despite the continents.

As was explained in the previous section, the grid can be extended to include also
points. Moreover, integrals involvingy’s can be computed by evaluating integrals witl
Aj’s only, by making use of the definition pf;. If we would ignore the continents we would
obtain a matriXK of the following (block)-structure:

K:(rL_T_C CIL). 37)

In this expression we can recognize the discrete counterparts of the various differe
operators:

B
V2L, ﬁ&—>C, 1—> M. (38)

These matrices are of simex n, with n the number of nodes. We know that, because of (€
the nodal values of the stream-function on each continent must be equal to each othe
each continent we define a “master” node; hence, the nodal values of the stream-fur
must be equal to the value of the stream-function in the master node. Let the yect
contain only the values of the stream-function in the master nodes (including values ir
nodes), and let the vectagr contain the values of the stream-function in all nodes of tt
grid, including all land points. These two vectors are related by

Py =y (39)

in which the matrixP is defined as follows. The columns that correspond to sea-points
just basis-vectors:

P=g VjeQ. (40)

And a column that corresponds to the “master” unknown on a continent is the sum of
basis vectors corresponding to the unknowns on the continent:

Pc=> g (41)

jelk

As was argued in the previous section, given the fact thatgfseare the sum of all;’s on
the corresponding continent, the nodal values of discretized curl of the external force f
which we will denote byf, should be added together on each continent. With the abc
definition of P this can be denoted by

f=P'f. (42)
The same arguments hold for the discrete differential operators, e.g.,

L=PL. (43)
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Hence, the system we actually have to solve is

PT O\ (/rL—C AL\ /P O\ (/vyv\ _(P" O)/f (4a)
o | -L M o | ¢) 0o 1 0)°
For iterative solution methods one only has to multiply with the system matrix. This op
ation can be performed in three steps:

o Give all “slave” nodes the value of the “master” noge= P1/7 .
o Multiply (‘ﬁ) by (37). (Structured matrix-vector product).
e Add up the values of the stream-function on each continEn:t:PTl//.

This approach makes the implementation of the boundary conditions for continents
tremely simple. One can first discretize Eq. (14) without taking the boundary condition
into account. The boundary condition (6) is taken care of in the matrix—vector multipli
tions by means of two extremely simple operations on vectors.

In global ocean circulation models one, of course, has the periodic conditions

These conditions can be taken into account in the same way as (6) by means of a m
slave hierarchy between the nodes. In fact, we have implemented the periodic conditit
this manner.

We want to stress the extreme simplicity and elegance of the method described al
The “unnatural” evaluation of wind-stresa landresults in an easily and straightforwardly
implementable method. Moreover, a structured grid results in a structured matrix (if
nodes are properly ordered).

7. EXAMPLE

In this section we will describe the results of two simulations of global ocean circulati

7.1. Choice of Parameters
For realistic simulations we need the following information and data:

Topography information,
The external force field,
Earth radiusR,

Coriolis parameteg,

Lateral viscosity paramete,
Bottom friction coefficient .

We have extracted the topography information from a datafile provided by NCH#Rs
datafile gives depth-information with a resolution of one degree. We have used a resol
of 2°. Our grid ranges from 89South to 89 North, thus circumventing the singularity at
the poles due to the use of spherical coordinates. From the depth information we detern

http://www.scd.ucar.edu/dss/datasets/ds750.1.html.
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FIG. 1. Average wind field in January.

whether our grid points are either land or water by linear interpolation. Next, we detern
which grid points belong to the same continent by a simple region-growing algorithm;
e.g., [9].

The external force field relates to the wind stress by

1

F=—r.
HpT

(46)
We have used the long-term averaged data of the wind str@sganuary, collected by
Hellerman and Rosenstein [5]. Figure 1 shows the wind field and the different islands
continents. There is a total number of 26 islands and continents.

The water density is 1000 kg/m, and we have taken for the average depth of the oce
H =500 m.

The Earth radius and Coriolis parameter are known tRke6.4 x 10° m andp =
cosh - 2Q/R=2.3 x 10 coss(ms)~%, with Q the angular velocity of the Earth.

The lateral viscosityA is not well known. Estimations range from 10216?%/s. We have
neglected lateral viscosity in the first experiment and takea500 nt/s in the second
experiment. The latter value has been taken from [8].

The bottom friction arises from Ekman boundary layers at the bottom, and is rele
to the vertical eddy-viscosity coefficiert,, which is again not very well knowfL0—1—
1075 m?/s):

r=+/A f/2H. (47)
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Becausé\, is not well known, the bottom frictionis usually approximated by a paramete
that does not depend on latitude or longitude, despite the dependency on the Co
parametel f =2Q sind). The parameter plays the part of a diffusion coefficient in (5)
and occurs therefore in the mesh—Peclet number defined as

_ hBRcosy
B r

Pe (48)

with h the mesh size, for our griol= 7/90. We have chosen= 5 x 10~% s~1. This value
is physically realistic and yields a maximal mesh—Peclet number slightly greater than
which is sufficiently small to avoid spatial oscillation (“wiggles”).

We have assumed a rather shallow ocean with an average depth of 500 m. If we w
have assumed a deeper ocean, the bottom friction would be correspondingly smalle
it would be harder to attain numerical stability. The velocities we obtain for our choice
parameters are of the correct order of magnitude, i.e. centimeters per second.

The stream-function should be prescribed on one island or continent. We have presc
the stream-function to be zero on the largest continents, i.e. America, Eurasia, and Al
Our grid is too coarse to resolve Bering Strait. The results are not influenced by the ct
on which continent the stream-function is prescribed. Prescribing on the largest conti
has the advantage that the linear system becomes better conditioned and, hence, ec
solve by an iterative method. The iterative solution method we used is GMRESR [:
combined with diagonal scaling.

7.2. Results

The model we have used as our test problem is too simplified to expect very real
results. E.g., bottom topography, nonlinear effects, and three dimensional effects at
neglected. Our model mainly gives a balance between wind stress, Coriolis force,
bottom friction. The effect of lateral viscosity is neglected in the first experiment and sn
in the second experiment. The surface currents are wind driven and should, therefore,
or less follow the wind field. The currents near the equator deviate most prominently fi
this global pattern.

Figure 2 shows a contour plot of the stream-function. The qualitative result is good
main surface currents are present.

The velocities can be computed from the values of the stream-function by numel
differentiation. This result is show in Fig. 3. Some important currents and phenomena
are well captured are:

e western boundary currents, due to the Coriolis force,

o the Antarctic Circumpolar Current, the strongest current,

o the Gulf stream, the most important current for the climate in Northern Europe, at
e back-flow around the tip of Africa.

In the second experiment we also included the effect of lateral viscosity. As was rema
before, this effect is small, and the graphical results are not significantly different from
results of the first experiment.
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8. CONCLUDING REMARKS

In this paper we have described a method for discretizing and solving stream-func
problems on multiply connected domains. We have applied this method to a simple gl
ocean circulation model.

8.1. Application to More Complicated Models

An important question is: Can the approach we have taken to implement the boun
conditions for the stream-function also be applied to more complicated models? The an
will depend on the model of course. We have also implemented our ideas in a model the
scribes unsteady barotropic flow and thatincludes (nonlinear) advective terms. In this m
the no-slip condition can be implemented in exactly the same way as described in this p

8.2. Application to the Finite Difference Method

The finite difference method is widely used for simulating ocean circulation. The quest
whether our ideas can be incorporated into the finite difference method is therefor
particular interest. Looking at the final algorithm, described in Section 6, the obvious an:
for the finite difference method would be:

o Discretize the equations with the finite difference method without taking the islar
into account. This gives a matrix similar to (37).

o Taketheislands into account by making a “master—slave” hierarchy between the nc

e Solve system (44).

A sound mathematical basis for this procedure is completely lacking, and more rese
in this direction should be carried out.

8.3. Conclusions

Our method has the following features and advantages:

o Integral conditions are implicitly taken into account in the solution phase, by mak
a “master—slave” node hierarchy per island or continent. It is not necessary to deter
explicit paths of integration.

e The method allows arbitrarily many islands or continents, including extra islands o
changes the “master—slave” relations between nodes.

o Nodistinction needs to be made between “land” and “sea” grid points in the discret
tion.

e A structured grid yields a structured matrix (if the nodes are properly ordered).

Finally, we want to stress the elegance and simplicity of the method.

APPENDIX: DETAILED DERIVATION OF THE LINEAR SYSTEM OF EQUATIONS

Choosingy = A;, withi € Q and substituting this in the first equation of (14), we obtai
the equations
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Z/rw. Vij — ﬂx. stz W;+Z/rW. Vuk—ﬂk.—dQ Dk

jeQ
n ~
+Z/AVM - VA dQ g
j=1
/kaFdQ—i-ZfrA.——i-Ak.—gds Vi € Q. (49)

Choosingy =i, i =1, 2, ..., ngand substituting these into the first equation of (14) yielc

Z/rvﬂl Vi — I8M| J dQ 1// + Z/r Vi - Vl/«k_lgl/h dQ wk

jeQ

n
+Z/AVM - VAj dQEJ‘
j=1

/M,VdeQ—i—Z?{ rul——i— ,u,agds, i=12,...,n (50)

an
Finally, choosingg = A, i =1, 2, ..., n and substituting these into the second equation:
(14) yields
Z/w. Vi dQ ¥ +Z/v/\. wkdszwk+2//\ A dQY
jeQ
Nk
d .
=Z]{)»i—wda i=12...,n. (51)
= /i an
Note that
Ai=0 onl,k=1,...,ncVieQ (52)
and
Uk = ik onFi,i=1,...,nk (53)

Substituting (52), (53) and the circulation condition (9) into (49), (50), and (51) yields
resulting system of linear equations (23)—(25).
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